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We investigate properties of the exponential function concerning the overlapping
approximation which was introduced in former papers. We give bounds for the rate
of convergence of the sequence of least deviations and give an exact formula for the
convergence speed in the case of only one knot on the positive axis. © 1991 Academic

Press, Inc.

0. INTRODUCTION

The differential equation y' +Ay = 0, where A is a positive definite and
Hermitian matrix, and its solution y(t)=e-At·yo, yoEC m

, leads to the
problem of how to compute the matrix e- At efficiently. Starting at this
point, in [4,5] we developed the so-called overlapping approximation
which deals with a more general problem: given any continuous function
I: [0, (0) ~ ~, the matrix function I(At) must be approximated by matrix
valued mappings of a simple structure. For this purpose we take a fixed
kEN and °< m < M such that the spectrum of A is contained in [m, M].
With P := M/m > 1 and arbitrary 1];::' 0 we define

J1(1]):= [0, I]/M],

J v(I]) := [l]pv-2/M, I]pv-l/M]

Jk+1(1]):= [I]pk-l/M, (0).

for 2";; v ,,;;k,

Then for any real polynomial p and 1 ,,;; v ,,;; k + 1 it is easy to see that

sup II/(At) - p(At)112";; III- pll I,(~),
tEJ,(~)
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where 11·112 and 11·11/ denote the spectral norm and the maximum norm,
respectively, and Iv(rO is defined by

II (1]) := [0, 1]],

I
v
(1]):= [1] pv-3, 1]PV-IJ

I k + 1 (1]):= [1]p k
-

2
, iXl).

for 2 ~ v~k,

Therefore, a polynomial approximation p for f on Iv (1]) leads to an
approximating matrix function p(At) for f(At) on J v (1]) and we can define
the following least deviation, where En(f, I) denotes the least deviation of
f on I with respect to IIn-

0.1. DEFINITION. LetfE C[O, (0), kE N, n E No, and p> 1 be given.

(i) For 1] ~°set

if l~v~k

and

dinll,P(f, 1]) = dk + l,p(f, 1]) = Eo(f, I k+ 1(1])).

Moreover, set

(ii) The least deviation of f on [0, (0) with respect to p, k, and Iln

is defined as

a(n) (f) = inf a(n) (f, 1])k,p ~",o k,p , .

We showed in [5J that for each p> I there is a q> 1 such that for each
continuous function f the inequality ai~~(f) ~ q-n holds if n is large
enough. Therefore, it is of considerable interest to study functions which
possess this best possible convergence speed.

0.2. DEFINITION. We call f geometric W.r.t. k and p if for at~(f) =
(a(n) (f))l/n the inequalityk,p

lim sup ai~~(f) = l/Qk,p(f) < 1
n~CJ)

holds; i.e., the sequence of least deviations converges to zero geometrically.

In [5J the class of geometric functions was completely characterized. In
particular, we showed that this property does not depend on k and p and
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x + iyE Ci/)

that each geometric function is the restriction of an entire function of finite
order.

In this paper we investigate the speed of convergence of the least
deviations for the standard geometric function: the exponential function
f(t)=exp(-t). The following remark shows thatfis geometric and gives
a crude quantitave estimate of the convergence speed by using Taylor
series.

OJ. Remark. We set Sn(X)=L~~o(-l)V(xv/v!), choose bE(O,I/e)
satisfying exp(15/P) = 1/(eb), and set YJ n = 15 . n. Then for x E [0, YJ n J, there is
~ E [0, YJnJ with

I
exp( -0 Ijexp(-x)-S (x)1 = (-It+ 1 xn+1

n (n+l)!

n+1
~()n+1_n__

(n + I)!

n 1
~bn+ 1 --exp(n)--< b. (15 ·e)n.

n+l ~

Moreover, we have d~~b(j; '1n) =! exp( -YJn/P) =Hb. e)n, and because of
15 . e < 1 we obtain geometric convergence by using the Taylor expansion of
exp( -x).

In the following, we derive sharper bounds for the convergence speed
l/qk,p(f). In Section 1 we show that for sufficiently large k the inequality
l/qk,p(f) ~ (p - 1)/(p + 1) holds, whereas in Section 2 we develop a
method to compute the exact value of q1,p(f) as a root of a certain
equality.

1. RATE OF CONVERGENCE FOR LARGE k

In [4, Korollar 2.3.7J we showed that for fixed k and P the convergence
speed of f(t) = exp( - t) satisfies

I/Qk,p(f);:::: M(.JP) -.jP/(.jP-1) > 0,

where M(x) = (.j; + 1)/(.j; - 1)). In order to get upper bounds less than
1, we must consider the behaviour of exp( -z) on certain ellipses. For a
compact interval 1= [a, bJ and Q> 1, we define Cq(I) by

'f (2x-a-b)2 (2yf
1 1 2+1 2~1.

(2:(b-a)(Q+ I/Q)) (2:(b-a)(Q-l/Q))



EXPONENTIAL FUNCTION

Then from [2, Theorem 73] it easily follows that

for an entire function f and r > 1.

329

1.1. THEOREM. For f(t) = exp( - t) and given p> 1 there is k pEN such
that l/Qk,p(f):( (p -1 )/(p + 1) for k ~ k p.

Proof We assume that k> 1. For I] > 0 and r1 > 1 it follows from (*)
that

di~~(f,I]):( n( 2_
1
) max lexp(-z)1

r1 r1 zEC'l(lJ(~))

2
n( -1)' exp( -1]/2 + l](r 1 + 1/rd/4),

r1 r1

because the largest value of lexp( -z)1 is reached at the left vertex of the
ellipse. Analogously, for 2:( v:( k we have

and

d in) (i' )_1 ( k-2)k+1,p;,1] -"2 exp -I]P .

Setting A 1 =1]/4>O and A v =l]pv
-

2(p-l/p)/4>O for 2:(v:(k, the parts
of these upper bounds being relevant w.r.t. r v can be written as

exp(Av(r. + l/r.))
r~(rv-l)

Minimizing the function g(r) = r- n
• exp(Av(r + l/r)) we obtain

r v = 2:v +J(2:J2

+1> 1
and with I] = n . 15 and
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F(t5) := ~ exp(JI + 15
2
/4 - 15/2),

2 Jl+t5 2/4+1

t5(pV~ 1 _ pV- 3)
Xv (15) := 2

exp(JI + t5 2(pv-I_ pV~3)2/4_t5(pv~1 + pV-3)/2)

Jl +t52(pv~l_pv-3)2/4+1

we have

v=2, ..., k

2
d~~1(f, 1]) ~'I -1 (F(t5)t,

2
d~~1(f,1])~, -1 (Xv(t5)t,

v

2~v~k,

for arbitrary 15 > O. Since (t5/2)(p v-I + Pv~ 3) = ((p2 + 1)/(p2 - 1)) . 15/2.
(p v ~ 1_ Pv - 3), we can simplify the formula for Xv (15), 2 ~ v~ k, by setting
~=(N2)(pv-I_pv~3) and obtain

Xv (15) = ~. exp(~ - ((p2 + 1)/(p2 -1)) 0 =: Y(O.

~-1

Using standard arguments, it is easy to see that Y reaches its maximum at
the point ~o = Hp - 1/p) > 0, where Y( ~o) = (p - 1)/(p + 1), which implies
that Xv(t5)~(p-l)/(p+l)for 15>0. Therefore,

1 (P-l k 2)
qk,p(f)~max F(t5)'p+l,exp(-t5p -) for 15 > O.

Since F(O)=O we can choose 15>0 such that F(t5)«p-l)/(p+l)
and kpEN satisfying exp(-t5pkp -2)«p-l)/(p+l), but this implies
l/qk,p(f)~(p-l)/(p+l)fork~kp. I

2. THE CASE k= 1

In the following, we set qp = ql,p(f) for f(t) = exp( - t) and p> 1.
Although it was shown in [5, Satz 3] that l/qp~ I/M(p), this lower bound
tends to zero for p ~ 1 and therefore cannot be sharp. We show here that
qp can be determined as a root of an equation. Since this is an implicit
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description of qp' we also give a lower bound for q p that can be computed
easily.

2.1. THEOREM. qp> 1 is the unique root of the equation 1/q = F(p log q),
where F is given by

F 6) := ~ exp(J1 4- 6
2
/4 - 6/2.

( 2 J1+6 2/4+1

Proof We denote by Tv the vth Tchebyshev polynomial of the first
kind and by

the Bessel function of order v with purely imaginary argument. Then it is
well-known that for t E IR and z E C

00

exp(tz)=Io(t)+2· L Iv(t)TAz).
v=l

We choose an arbitrary IJ>O. If d~~b(f,IJ)=d~~b(f,IJ)we set 'Yfn = IJ· If
d~~b(f,1J»d~~b(f,'Yf), by continuity arguments there is O<1Jn<1J with
d~~b(f, IJn) = d~~b(f, 1Jn) and in the case d~~b(f, 1J) < d~~b(f, 1J) we get 1Jn > 1J
with this property. In any case we have

with a suitable qn> 1. Then by [2, Theorem 66J we have
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If we choose an arbitrary ij < q p' then for sufficiently large n we have
1jqn< l/ij and (qn/21Intln+l ~ij and, therefore,

~ ~ exp ( - ~ log 2~~n)( In + 1 (p(n; 1) log ij)Yin.

Obviously, we can substitute ij by qp and by choosing a suitable sub
sequence one gets

Since it is well-known (cf. [3,7.07 and 7.16J or [1,9.7.7 and 9.7.11J) that
for t > 0

we obtain

1 p log qp exp(J1 + p2(log qpf/4 - (p log qp)/2)
qp~ 2 . --=""":"">:"'----:-1-'+-Jf=l=+=p~2(==lo=g=q='p=;)2;=/4==--''-''-'-'--'...

= F(p log qp).

Following the proof of Theorem 1.1, we also have l/qp < max(F(6),
exp( - 6/p)) for arbitrary 6 > O. Since F is a monotonic increasing function
satisfying F(O)=O, there is a unique 6p>0 such that F(6 p)=exp(-6p/p)
and hence

1
F(6 p)~ - ~ F(p log qp).

qp

Therefore, plogqp~6p, but we also have

(
IOgqp) 1 (-6 p)exp -p '-p- = qp <exp p ,

and since exp( - t/p) is decreasing, one gets p log qp ~ 6p and therefore

1
- = F(p log qp). I
qp

Table 1 gives the values of qp for p = 1, ..., 10, where ql must be under
stood as limp -> 1 qp'
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TABLE 1

Convergence Parameter qp and Lower Bounds

p JM(p+1)

1
2
3
4
5
6
7
8
9

10

2.448526
1.940108
1.735422
1.619778
1.543693
1.489042
1.447472
1.414548
1.387677
1.365231

2.414214
1.931852
1.732051
1.618034
1.542659
1.488372
1.447009
1.414214
1.387426
1.365037

Although Theorem 1.1 makes it possible to compute qp directly (e.g.,
with the help of Newton's method), it is an implicit formula. Therefore, we
give a different method to compute qp as the maximum value of a certain
positive function. For this purpose we set

h(m):= (1 +~ (m-1) (1 +)1 +m~ 1)Y1m.

2.2. THEOREM. qp = maxm ~ 1 h(m).

Proof At first we show that qp~h(m) for each m~ 1 holds. We choose
I1n and qn as in the proof of Theorem 2.1. Then

Yfn = P.(n log qn -log 2)

and for arbitrary s> 1 it follows that

:~ = exp (-2
Yfn

.En (exp (Yf;t). [-1,1])

( -Yfn) 2 I (-Yfn Z
)\'~ exp -- . . max exp--

2 sn(s-1) ZE8s([-1,1]) 2

2
sn(s-1) ·exp(YfA,u(s)-1))
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where /-l(s) =!(1 +!(s + 1js)). By taking this inequality to the power of 1jn
and choosing a suitable subsequence one obtains q~(Jl-(s) -1) + 1 ~ s. Thus for
s = q; > 1we have p. (/-l( q;) - 1) +1~ m and by an easy calculation we
get qp~h(m). Since l=limm~lh(m)=limm~ooh(m), there is m>l such
that h(m) = maxx)d h(x) and h'(m) = O. To calculate the derivation of h we
write

h(m) = (1 +~ (m -1) (1 +J1+ m~ 1)Ylm

= (1 + 2. J1+ pj (m - 1) +1)11m

(J1+pj(m-1)?-1

_(1 +---r===2=_) 11m

- J1 +pj(m-1)-1

=exp (~log (1 + 2 )),
m J1+pj(m-1)-1

and by an easy calculation we obtain

h'(m)=h(m).( 1
m(m-1) J1 + pj(m-1)

__1 10g (1+ 2 ))
m

2
J1+pj(m-1)-1

=h(m).( 1 10gh(m)).
m (m-1)J1+pj(m-1)

Since h'(m)=O this leads to logh(m)=lj(m-1)J1+pj(m-1). In
order to substitute (m-1)jp and pj(m-1) in the definition of h(m), we
note the equations

2 1
(m -1) + p(m -1) - (log h(m)? =0,

1 1
(m _1)2 - p(log h(m))2. m -1 - (log h(m))2 = 0

and get

and P (j2 R--=-+(j. 1+-
m-1 2 4'
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where J == p ·log h(m). By definition of J we have J 1+ p/(m - 1) =

J/2 + J1 + J2/4 and therefore the equation

h(m)m = 1+ ( -1 + J1+ :2) . ( 1+ ~ + J1+ J:) = ~. ( 1+ J1+ J4

2

),

which implies that h(m)-m = (J/2)/(1 + JJ + J2/4). Thus we can write

_1_= h(m)-m .h(m)m-l
h(m)

J/2

J
·exp((m-l)logh(m))

1+ 1+J2/4

= J/2 exp ( 1 )
1+Jl+J2/4 Jl+p/(m-l)

J/2 (~ b)
= 1+J1+(F/4

exp
yl+4-2 '

and this means that h(m) is the root of the equation l/q = F(p log q). Using
Theorem 2.1. we get maxx~ 1 h(x) = h(m) = qp' I

Numerical computations show that in general m = 2 seems to be not the
optimal but a good parameter value, as can be seen in Table 1. In this case
we get JM(p + 1):( qp' Moreover, this inequality shows that the bound
(p + 1)/(p - 1) of Theorem 1.1 is of interest only for sufficiently small
values p> 1, because

if p is large enough. In fact, numerical computations show that
q p > (p + 1)/(p - 1) holds for p ~ 4.42435 such that in this case qp is a
better lower bound for qk,p(f) than (p + 1)/(p - 1).
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